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Abstract We consider the simultaneous propagation of two contagions over a social
network. We assume a threshold model for the propagation of the two contagions and
use the formal framework of discrete dynamical systems. In particular, we study an
optimization problem where the goal is to minimize the total number of infected nodes
subject to a budget constraint on the total number of nodes that can be vaccinated.
While this problem has been considered in the literature for a single contagion, our
work considers the simultaneous propagation of two contagions. Since the optimization
problem is NP-hard, we develop a heuristic based on a generalization of the set cover
problem. Using experiments on three real-world networks, we compare the performance
of the heuristic with some baseline methods.

1 Introduction
Contagion models have been used to explain a host of observed phenomena in hu-
man populations (e.g., the spread of diseases, fads, opinions, information, actions such
as joining a group) [8, 16, 19]. In this paper, we treat contagions as undesirable enti-
ties (such as infectious diseases) propagating through a network. Network models of
contagion propagation capture complex patterns of interaction missed by models that
assume homogeneous mixing. These interactions present interesting combinatorial op-
timization problems such as seed selection and contagion blocking. Our focus in this
paper is on blocking. Previous work on blocking focuses on the case where only a single
contagion is propagating through a network (see, e.g., [5, 11] and the references cited
therein). We seek to extend prior work from the single contagion setting to the multiple
contagion setting. To understand the landscape of the area, we consider two independent
contagions propagating under the threshold model [9]. Under this model, an individual
(i.e., node in a social network) gets infected because it has at least a sufficient number
(called the threshold) of infected neighbors. In addition to disease propagation, thresh-
old models [4, 9, 17, 21] have also been used to capture other social contagions (such
as information, opinion and fads). In this paper, we consider disease propagation and
use vaccinating nodes as the blocking strategy. The goal is to reduce the number of
newly infected nodes under a budget on the number of nodes that can be vaccinated.
Following [11], we use the synchronous dynamical system (SyDS) as the formal model
for contagion propagation; see Section 2.
Summary of Results: We discuss a general threshold-based model for the simultane-
ous propagation of two contagions through a network. As this general model (which
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requires the specification of five threshold values for each node) is somewhat complex,
we consider a simplified model that uses only two threshold values for each node. Us-
ing that model, we formulate the problem of minimizing the number of new infections
in a network by vaccinating some nodes. In practice, there is a budget constraint on the
number of vaccinations. We observe that the resulting budget-constrained optimization
problem is computationally intractable using a known result for the case of a single
contagion [11]. Therefore, we develop an efficient heuristic algorithm called MCICH
for the problem. This heuristic is based on a generalized version of the Minimum Set
Cover (MSC) problem [7]. Through computational experiments, we compare the per-
formance of MCICH with two baseline methods using three real-world social networks.
Our results indicate that MCICH is able to block the two contagions effectively even
with a small vaccination budget, and performs far better than the other two methods.
Related Work: Reference [11] treats the single contagion blocking problem under the
threshold model. The goal is again to minimize the number of new infections subject
to a budget on the number of nodes that can be vaccinated. It is shown that if the bud-
get cannot be violated, even obtaining an approximation algorithm with any provable
performance guarantee is NP-hard. Two efficient heuristics for the problem are intro-
duced and their performance is evaluated on several social networks. Although single
contagion epidemic models have been studied for years, study of the multiple conta-
gion context is newer. For example, conditions for the coexistence of two contagions in
compartmental models are explored in [3]. A number of references (see e.g., [10,14,15]
and the references cited therein) have considered the propagation of competing conta-
gions (where infection by one contagion prevents or reduces the likelihood of infec-
tion by another), and cooperating contagions (where infection by one contagion makes
it easier to get infected by another contagion). While our work uses the determinis-
tic threshold model, reference [18] discusses a general framework for a probabilistic
multiple-contagion model, namely the Susceptible-Infected-Recovered (SIR) model.

2 Definitions and Analytical Results
Model Description: We use the synchronous dynamical system (SyDS) model stud-
ied in the literature (see e.g., [2]). A (SyDS) S over a domain B is specified as a pair
S= (G,F), where (a) G(V,E), an undirected graph with |V |= n, represents the under-
lying graph of the SyDS, with node set V and edge set E, and (b) F = { f1, f2, . . . , fn}
is a collection of functions in the system, with fi denoting the local function associ-
ated with node vi, 1 ≤ i ≤ n. Each node of G has a state value from B. Each function
fi specifies the local interaction between node vi and its neighbors in G. The inputs to
function fi are the state of vi and those of the neighbors of vi in G; function fi maps
each combination of inputs to a value in B. This value becomes the next state of node
vi. It is assumed that each local function can be computed efficiently.

For a single contagion, the domain B is usually chosen as {0,1}, with 0 and 1 rep-
resenting that a node is uninfected and infected respectively. Since we have two con-
tagions (denoted by C1 and C2) propagating through the underlying network, we have
four possible states for each node, denoted by 0, 1, 2 and 3; thus, B = {0, 1, 2, 3}.

The interpretation of these state values is shown in Table 1. An easy way to think of
these states is to consider the 2-bit binary expansion of the state values 0 through 3. The
least (most) significant bit indicates whether the node has been infected by C1 (C2).
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Table 1: Possible states for each node

State Interpretation
0 Not infected by either C1 or C2
1 Infected by C1 only
2 Infected by C2 only
3 Infected by both C1 and C2

0 3

2

1

Fig. 1: Possible state transitions for
each node

We assume that the system is progressive with respect to each of the contagions [6];
that is, once a node is infected by a contagion, it remains infected by that contagion.
Using this assumption, Figure 1 shows the possible state transitions for each node.
State transition rules: Each node v is associated with a local transition function fv
that determines the next state of v given its current state and the states of the neighbors
of v. Such a function may be deterministic or stochastic (as in SIR systems). Here, we
will consider a simple class of deterministic functions called threshold functions.

A general form of local functions: We first discuss a very general (but somewhat
complex) form of local functions for the propagation of two contagions in a network
and then present a simpler form that will be used in the paper. In the general form, for
each node v and each of the five possible state transition x to y (shown in Figure 1),
there is a threshold value θ(v,x,y). Let N(v, j) denote the number of neighbors of v in
state j, 0 ≤ j ≤ 3. (If the state of node v is j, then v is included in the count N(v, j).)
For any node v, the rules for each possible state transition which collectively specify
the local function fv are shown in Table 2.

Table 2: Transition rules to specify the local function fv

Transition Condition
0−→1 (N(v,1)+N(v,3)≥ θ(v,0,1)) and (N(v,2)+N(v,3)< θ(v,0,2))
0−→2 (N(v,1)+N(v,3)< θ(v,0,1)) and (N(v,2)+N(v,3)≥ θ(v,0,2))
0−→3 (N(v,1)+N(v,3)≥ θ(v,0,1)) and (N(v,2)+N(v,3)≥ θ(v,0,2))
1−→3 N(v,2)+N(v,3)≥ θ(v,1,3)
2−→3 N(v,1)+N(v,3)≥ θ(v,2,3)

We briefly explain two of the state transition conditions shown in Table 2. The con-
ditions for other state transitions are similar. Consider the condition for the “0−→1”
transition. For this transition to occur at a node v, the number of neighbors of v in
state 1 or state 3 must be at least θ(v,0,1) (i.e., (N(v,1) +N(v,3) ≥ θ(v,0,1))) and
the number of neighbors of v in state 2 or state 3 must be less than θ(v,0,2) (i.e.,
(N(v,2) + N(v,3) < θ(v,0,2))). Likewise, for the “1−→3” transition to occur at v,
the number of neighbors of v in state 2 or state 3 must be at least θ(v,1,3) (i.e.,
(N(v,2)+N(v,3) ≥ θ(v,1,3))). At any state j ∈ {0,1,2,3}, if none of the conditions
for transitions out of j hold, the node remains in state j.

The above general model is powerful as it allows the two contagions to inter-
act. Many references have considered cooperating and competing contagions (e.g.,
[10, 12, 15]). For example, in the case of cooperating contagions, if a node has already
contracted C1, it may be easier for it to contract C2. This can be modeled by choos-
ing a low value for θ(v,1,3). However, the model is also complex since it requires the
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specification of five threshold values for each node. In this paper, we consider a simpler
model which uses only two threshold values for each node.

A simpler form of local functions: In the general form discussed above, each node
was associated with five threshold values, one corresponding to each of the five transi-
tions shown in Figure 1. In the simpler model, for each node v, we use two threshold
values, denoted by θ(v,1) and θ(v,2). The parameter θ(v,1) is used when v is in state
0 or state 2 (i.e., has not contracted contagion C1); it specifies the minimum number of
neighbors of v whose state is either 1 or 3 so that v can contract contagion C1. Simi-
larly, θ(v,2) is used when v is in state 0 or 1, and it specifies the minimum number of
neighbors of v whose state is either 2 or 3 so that v can contract contagion C2. Unlike
the general model, the simpler model does not permit other interactions between the
two contagions. However, the simpler model facilitates the development of analytical
and experimental results.

Additional definitions concerning SyDSs: At any time τ , the configuration C of
a SyDS is the n-vector (sτ

1,s
τ
2, . . . ,s

τ
n), where sτ

i ∈ B is the state of node vi at time τ

(1 ≤ i ≤ n). Given a configuration C , the state of a node v in C is denoted by C (v).
As mentioned earlier, in a SyDS, all nodes compute and update their next state syn-
chronously. Other update disciplines (e.g., sequential updates) have also been consid-
ered in the literature (e.g., [2, 13]). Suppose a given SyDS transitions in one step from
a configuration C ′ to a configuration C . Then we say that C is the successor of C ′,
and C ′ is a predecessor of C . Since the SyDSs considered in this paper are determinis-
tic, each configuration has a unique successor. However, a configuration may have zero
or more predecessors. A configuration C which is its own successor is called a fixed
point. Thus, when a SyDS reaches a fixed point, no further state changes occur at any
node.

Example: The underlying network of a SyDS in which two contagions are propagating
under the simpler model discussed above is shown in Figure 2.

da

b

c

Fig. 2: The underlying network of a SyDS
with two contagions. For each node v, both
the threshold values are 1.

For each node v, the two threshold val-
ues θ(v,1) and θ(v,2) are both chosen as
1. Suppose the initial states of nodes a,
b, c and d are 1, 2, 0 and 0 respectively;
that is, the initial configuration of the sys-
tem is (1,2,0,0). The local function fa at
a is computed as follows. Since a is in
state 1, we need to check if it can con-
tract contagion C2. Since θ(a,2) = 1 and
a has a neighbor (namely b) in state 2, a
can indeed contract contagion C2. There-
fore, the value of the local function fa is
3; that is, the next state of a is 3. In a

similar manner, it can be seen that the local functions fb and fc (at nodes b and c re-
spectively) also evaluate to 3. For node d, whose current state is 0, there is one neighbor
(namely, b) whose state is 2. Therefore, the local function fd at d evaluates to 2. Thus,
the configuration of the system at time 1 is (3,3,3,2). Since the system is progressive,
the states of nodes a, b and c will continue to be 3 in subsequent time steps. However,



Blocking Two Simultaneous Contagions 5

the state of node d changes to 3 at time step 2 since d has a neighbor (namely, b) whose
state at time step 1 is 3. Thus, the configuration of the system at the end of time step 2
is (3,3,3,3). In other words, the sequence of configurations at times 0, 1 and 2 of the
system is:

(1,2,0,0) −→ (3,3,3,2) −→ (3,3,3,3)

Once the system reaches the configuration (3,3,3,3), no further state changes can occur.
Thus, the configuration (3,3,3,3) is a fixed point for the system.

In this example, the SyDS reached a fixed point. Using our assumption that the
system is progressive, one can show that every such SyDS reaches a fixed point.

Proposition 1. Every progressive SyDS under the two contagion model reaches s fixed
point from every initial configuration.

Proof: Consider any progressive SyDS on B = {0,1,2,3}. Let n denote the number of
nodes in the underlying graph of the SyDS. In any transition from a configuration to a
different configuration, at least one node changes state. Because the system is progres-
sive, each node may change state at most twice: once from 0 to 1 (or 0 to 2) and then
from 1 to 3 (or 2 to 3). Thus, after at most 2n transitions where the states of one or more
nodes change, there can be no further state changes. In other words, the system reaches
a fixed point after at most 2n transitions.
Problem Formulation: The focus of this paper is on a method for containing the prop-
agation of two simultaneous contagions by appropriately vaccinating a subset of nodes.
Before defining the problem formally, we state the assumptions used in our formulation.

Following [11], we assume that only those nodes that are initially uninfected by
either contagion (i.e., nodes whose initial state is 0) can be vaccinated for C1 and/or
C2. When a node is vaccinated for a certain contagion, the node cannot get infected
by that contagion; as a consequence, such a node cannot propagate the corresponding
contagion. For i = 1,2, one can think of vaccinating a node v for a contagion Ci as
increasing the threshold θ(v, i) of the node v to degree(v)+1 so that the number of
neighbors of v that are infected by Ci will always be less than θ(v, i). If a node v is
vaccinated for both C1 and C2, then it plays no role in propagating either contagion. In
such a situation, one can think of the effect of vaccination as removing node v and all
the edges incident on v from the network.

The optimization problem studied in this paper is a generalization of a problem
studied in [11] for a single contagion. This problem deals with choosing a small set
of nodes to vaccinate so that the total number of resulting new infections when the
system reaches a fixed point is a minimum. Given a set C of nodes to be vaccinated, a
vaccination scheme specifies for each node w∈C, whether w is vaccinated against C1,
C2 or both. The total number of vaccinations used by a vaccination scheme for a set
of nodes C is the sum N1 +N2, where Ni is the number of nodes vaccinated against Ci,
i = 1,2. Note that if a node w is vaccinated against both C1 and C2, then it is included in
both N1 and N2. Also, after a vaccination scheme is chosen and the contagions spread
through a network, the number of new infections is measured as the total number of
state transitions, because each state transition means a node acquires a new contagion.
A formal statement of this optimization problem is as follows.
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Vaccination Scheme to Minimize the Total Number of New Infections (VS-MTNNI)
Given: A social network represented by the SyDS S = (G,F) over B = {0, 1, 2, 3},
with each local function fv ∈ F at node v represented by two threshold values θ(v,1)
and θ(v,2); the set I of seed nodes which are initially infected (i.e., the state of each
node in I is from {1,2,3}); an upper bound β on the total number of vaccinations.
Requirement: A set C ⊆ V − I of nodes to be vaccinated and a vaccination scheme
for C so that (i) the total number of vaccinations is at most β and (ii) among all subsets
of V − I which can be vaccinated to satisfy (i), the set C and the chosen vaccination
scheme lead to the smallest number of newly infected nodes.

It is straightforward to show that VS-MTNNI is computationally intractable. To do
this, we state a problem and a result from [11].
Smallest Critical Set to Minimize the number of Newly Affected nodes (SCS-
MNA)
Given: A SyDS represented by a graph G(V,E) through which a single contagion is
propagating, a threshold value θ(v) for each node v, a set I ⊆ V of initially infected
nodes, a vaccination budget β and an upper bound Q on the number of new infections.
Requirement: A subset C ⊆V such that |C| ≤ β and after vaccinating the nodes in C,
the number of new infections in G is at most Q.

The following result is from [11].

Theorem 1. The SCS-MNA problem is NP-hard even when each threshold value
is 2. Further, if the vaccination budget cannot be violated, the problem cannot be
approximated 5 to within any factor ρ ≥ 1, unless P = NP.

It is easy to show that the result of Theorem 1 also holds for the VS-MTNNI
problem.

Proposition 2. The VS-MTNNI problem is NP-hard even when each threshold value
is 2. Further, if the vaccination budget cannot be violated, the problem cannot be ap-
proximated to within any factor ρ ≥ 1, unless P = NP.

Proof: The SCS-MNA problem can be easily reduced to the VS-MTNNI problem as
follows. Let an instance of SCS-MNA be given by a graph G(V,E), a subset I ⊆V of
initially infected nodes (by the only contagion), a vaccination budget β and an upper
bound Q on the number of new infections. From the graph G(V,E) of the SCS-MNA
instance, we create a new graph G′(V ′,E) by adding a new node v to V such that v
has no edges incident on it. In the VS-MTNNI instance, the initial state of each node
in I is chosen as 1 and the initial state of the new node v is chosen as 2. The two
threshold values for each node in G′ are chosen as 2. It is now easy to see that only
C1 can spread in the SyDS represented by G′. Therefore any vaccination scheme for G′

which vaccinates at most β that causes at most Q new infections is also a solution to
the SCS-MNA instance, and vice versa.

5An algorithm for the SCS-MNA problem provides a factor ρ approximation if for every
instance of the problem, the number of new infections is at most ρQ∗, where Q∗ is the minimum
number of new infections.
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Proposition 2 points out that in the worst-case, even obtaining an efficient approxi-
mation algorithm with a provable performance guarantee for the VS-MTNNI problem
is computationally intractable. Therefore, we now focus on designing a heuristic al-
gorithm that works well in practice. This heuristic relies on a known approximation
algorithm for a generalized version of the Set Cover problem, called the Set Multi-
cover problem [20]. In this problem, we are given a universal set U = {u1,u2, . . . ,un}
of elements, a collection C∗ = {C1,C2, . . . ,Cm} of subsets of U , an integer coverage
requirement ri ≥ 1 for each ui ∈U , 1 ≤ i ≤ n, a budget β ≤ m. The goal is to find a
subcollection C′ ⊆C∗ such that |C′| ≤ β and for each ui ∈U , the number of sets in C′

that contain ui is at least ri, 1 ≤ i ≤ n. When ri = 1, 1 ≤ i ≤ n, then we have the usual
Set Cover problem [7]. An iterative greedy heuristic (which in each iteration picks a set
which covers the largest number of elements whose coverage requirement has not yet
been met) is known to provide a performance guarantee of O(logn) for the Set Multi-
cover problem [20]. As discussed in Section 3 this heuristic is useful in developing our
heuristic for the VS-MTNNI problem.

3 Experimental Results
In this section, we provide the networks tested; descriptions of the key elements of
the analysis process—simulation and the contagion blocking heuristics (including the
new MCICH); a summary of the overall analysis steps; and results of the contagion
blocking numerical experiments. Throughout this section, we use the words “activated”
and “infected” as synonyms, and also “block” and “vaccinate” as synonyms.
Networks: The three networks of Table 3 are evaluated. We use only the giant compo-
nents from the networks.

Table 3: Networks used in experiments, and selected properties. All properties are
for the giant component of each graph. These properties were computed using the
net.science system [1].

Network Num. Nodes Num. Edges Ave. Degree Ave. Clust. Coeff. Diameter
Astroph 17,903 196,972 22.0 0.633 14
FB-Politicians 5,908 41,706 14.1 0.385 14
Wiki 7,115 100,762 28.3 0.141 7

Simulation Process: A simulation consists of a set of iterations. Each iteration con-
sists of software execution of contagion propagation from a seed set I, where seed
nodes states are 1, 2, or 3. The total number of seed nodes is 20 in all iterations, and
are chosen from the 20-core of each graph. (The 20-core of a graph G is the subgraph
of G in which every node has a degree of at least 20 [6].) Each of the seed nodes has a
probability of 1/3 of being set to each of states 1, 2, and 3. (All iterations were also done
with 10 seed nodes, but results are not reported here.) An iteration starts at t = 0 with
the seed nodes as the only activated nodes. From these nodes, contagion propagates in
discrete times t ∈ [1 .. tmax] as described for the SyDS in Section 2. All state transitions,
x to y, are recorded for all v ∈V . In this work, all iterations within one simulations use
uniform thresholds for all nodes and all state transitions, so we abbreviate the thresholds
below by setting θ = θ(v,1) = θ(v,2). In this work, we run 10 iterations per simula-
tion, where the differences among the iterations is the composition of the seed node
sets. Simulations are run with and without blocking nodes.
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Blocking Heuristics: We present three methods (heuristics) for blocking a contagion.
The first two are well studied, and serve as baselines for comparison. The third method
is the covering heuristic MCICH that is a contribution of this work. For a simulation
involving two distinct contagions, the corresponding method is applied for each conta-
gion individually.

Random heuristic. For a given budget βi on the number of blocking nodes for contagion
Ci, select βi nodes from among all nodes, uniformly at random.

High degree heuristic. For a given budget βi on the number of blocking nodes for con-
tagion Ci, select the βi nodes with the greatest degrees (break ties arbitrarily).

New Multi-Contagion Independent Covering Heuristic (MCICH). We devise a set cover
heuristic to identify a subset of nodes that are activated at time t, to set as blocking
nodes, such that no nodes will activate at time t + 1. If this is accomplished, then the
contagion is halted at t, and our goal is achieved.

A key idea is that any node vi that is activated at time t + 1 does so because it
receives influence from nodes activated at time t, for otherwise, vi would have activated
at an earlier time. Thus, for a node vi that gets activated at time t + 1, vaccinating or
blocking nodes at time t will halt contagion propagation to vi. This idea is used in
the algorithm as follows. Consider the sets St and St+1 of nodes that get infected or
activated at times t and t + 1, respectively. We identify nodes from St , one at a time,
iteratively, where the node vk that is removed from St has the most edges in the graph G
to nodes that are still infected in St+1. Each time a vk is removed from St , the “covering
requirement” for each neighbor v j ∈ St+1 is reduced by 1, and when v js requirement is
0, by removal of one or more nodes from St , that means v j can no longer be infected for
contagion Ci.

The algorithm for the MCICH is presented in Algorithm 1. The algorithm computes
the set C of blocking nodes for contagion Ci for one iteration.

Summary of Analysis Process: The steps of the full analysis follow. Step 1: sim-
ulations are preformed without consideration of blocking nodes, as described above.
Step 2: using the simulation outputs, blocking nodes are determined using the blocking
heuristics and specified blocking node budget βi for contagion Ci. Step 3: the simula-
tions are repeated, with all conditions the same as in Step 1, except that now the block-
ing nodes are added (these blocking nodes remain in state 0). Note that the simulation
and blocking methods, models and codes can handle—as they currently exist—non-
uniform thresholds across nodes, different thresholds per contagion for each node, and
heterogeneities in other parameters. We are reporting uniform threshold results owing
to space limitations and because it is important to understand baseline behaviors.

Simulation and Blocking Results: Unless otherwise stated, all results are averages
over all 10 iterations of a simulation.

Basic simulation data and temporal blocking effects. Figure 3 provides three types of
results for the FB-Politicians network. The first two plots show temporal data on the
spread or propagation of both contagions C1 and C2 simultaneously without blocking.
The third plot shows temporal effects of blocking nodes on the propagation of both
contagions. Figure 3a shows the number of newly activated nodes at each time step. The
curves rise as uniform threshold decreases from 4, to 3, to 2, since contagion propagates
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Algorithm 1: Steps of the node blocking algorithm MCICH.

1 Input: Threshold θ = θ(v, i) for contagion Ci. A network G(V,E). A set I of initially
activated nodes (at time t = 0). Budget βi on the number of blocking nodes for
contagion Ci. Maximum number tmax of time steps to run simulation.

2 Output: The set C of blocking nodes such that |Ci| ≤ βi and such that the number of
(newly) activated nodes is small.

3 Steps:
(A) Run simulation of contagion propagation.

(i) Compute the activated nodes at each time step from t = 1 through tmax.
(ii) The output is a set St of newly activated nodes at each time t ∈ {0,1,2, . . . , tmax},

where S0 = A.
(B) Run the MCICH to obtain blocking node set C.

(i) for t = 1 to tmax:
(1) if |St | ≤ βi then set C = St and return C. Stop.
(2) Initialize the candidate set of blocking nodes Tt for this t to Tt = /0.
(3) Set Qt+1 = St+1; Qt+1’s elements will be removed iteratively.
(4) for each vk ∈ St+1, compute the number ρk of neighbors that must be

un-activated in order to prevent vk from being activated. Here, ρk = nk−θk +1,
where nk is the number of neighbors of vk in G that are activated at any t∗,
0≤ t∗ < t.

(5) while Qt+1 not empty and |Tt |< βi do:
(a) for each v j ∈ St , let H j be the subset of nodes in St+1 for which v j is a

neighbor in G.
(b) Select the node vk such that maxk |Hk ∩Qt+1|. Break ties arbitrarily.
(c) Add vk to Tt , the candidate set of blocking nodes.
(d) For each node v j in Hk, reduce ρ j by 1. if ρ j = 0 then remove v j from all

Hk and remove v j from Qt+1.
(6) if Qt+1 is empty then set C = Tt and return C. Stop.

(ii) No blocking set was found to completely stymie the contagion. Iterate through all
Qt+1 for all t ∈ [1 .. tmax−1] and set C = Tt for the smallest |Qt+1|; if ties, choose the
one at the earliest t. Return C. Stop.

more readily for lesser thresholds. Figure 3b shows the corresponding plots of total
or cumulative number of nodes activated for both contagions as a function of time.
Roughly 40% to 70% of FB-Politicians nodes are activated by tmax = 24, depending
on θ . Figure 3c uses the θ = 3 data from Figure 3b as a baseline, and shows three
additional curves, one for each of the three blocking methods discussed above. These
data show that for a blocking budget βi = 0.02 fraction of nodes, the MCICH performs
best (i.e., the curve is the lowest). For blocking contagions “lesser” (or “lower”) is
better. However, this budget is not sufficient to completely halt the contagion.

Efficacy and comparisons of all blocking methods across all networks. Figure 4 depicts
the efficacy of all of the blocking methods for the three networks, for threshold values
θ = 2, 3, and 4. Data for one network are in a row, and data for one threshold are in
one column. Each plot presents the cumulative fraction of activated nodes, as a function
of the blocking budget in terms of fraction of network nodes. Note that the y-axis is
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(a) θ = 2,3,4, no blocking (b) θ = 2,3,4, no blocking (c) θ = 3 with blocking

Fig. 3: Simulation results for the FB-Politicians network, where results are averages
over 10 iterations. (a) shows time histories of the average number of newly activated
nodes at each time step for contagions C1 and C2 combined, for three thresholds. (b)
shows time histories of the average number of cumulative activated nodes at each time
step for contagion C1 and C2 combined, for the same thresholds. (c) provides data for
θ = 3, for no blocking, and for each of the three blocking methods, where the blocking
node budget βi = 0.02 fraction of nodes. No method completely blocks the contagion
(a greater budget is required), but MCICH performs best over the entire time history.

the total number of activations, so that, for example, if a node has contracted C1 and
C2, then that counts as two activations. The cumulative fraction of activated nodes cor-
responds to the points at tmax in curves such as those presented in Figure 3c, for the
respective blocking methods, thresholds, and networks. There is a “no blocking” curve,
and three curves for each of the random blocking nodes heuristic, high degree blocking
nodes heuristic, and MCICH in each plot. Since lower curves represent more effective
blocking, it is clear that MCICH performs far better, in the great majority of cases, than
do the random and high-degree blocking heuristics. The blocking budget β is currently
allocated between the two contagions using proportion of nodes infected by contagions
C1 and C2 when there is no blocking. For example, suppose n1 and n2 denote the num-
ber of newly infected nodes by C1 and C2 respectively, we use n1/(n1 +n2) fraction of
the budget for blocking C1 and the remaining budget for C2. If the algorithm needs less
than the allocated budget for blocking C1, the remaining allocation is used to increase
the budget for C2.

4 Future Research Directions
There are several directions for future work. For example, it is of interest to evaluate
the MCICH heuristic under several other scenarios; examples include graphs with non-
uniform threshold values for nodes, different ways of selecting seed sets and skewed
distributions of seed nodes between the two contagions. It is also of interest to investi-
gate the sensitivity of our heuristic with respect to the choice of seed sets. In our model,
the two contagions are independent. It is of interest to investigate models where the
contagions interact; that is, a node that is infected one contagion may make it easier or
harder for the node to be infected by the other contagion.
Acknowledgments: We thank the reviewers for their comments. This work is partially
supported by NSF Grants ACI-1443054 (DIBBS), IIS-1633028 (BIG DATA), CMMI-
1745207 (EAGER), OAC-1916805 (CINES), CCF-1918656 (Expeditions), CRISP 2.0-
1832587 and IIS-1908530.
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(a) Astroph, θ = 2
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(b) Astroph, θ = 3 (c) Astroph, θ = 4
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(d) FB-Politicians, θ = 2
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(e) FB-Politicians, θ = 3
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(f) FB-Politicians, θ = 4
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(g) Wiki, θ = 2
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(h) Wiki, θ = 3
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(i) Wiki, θ = 4

Fig. 4: Simulation and blocking results of applying all three blocking methods to block
two-contagion spreading in three networks, using different threshold values for con-
tagion propagation for each network. Results for each network are in one row. From
the top to bottom rows, the networks are: Astroph, FB-Politicians, and Wiki. Each col-
umn contains data one threshold: left to right, θ = 2, 3, and 4. Each plot displays the
fraction of nodes contracting either contagion in diffusion simulations, as a function of
the fraction of nodes used as blocking nodes, employed to stop the contagions. In each
plot, there are four curves. Contagion spreading without blocking (black dots) is the
reference curve, and is a horizontal line. Results from the random selection of blocking
nodes is the green curve. Results from selecting the highest degree nodes as blocking
nodes is the blue dashed curve. Results from MCICH method is the red dash-dot curve.
The lower the curve, the better the performance in blocking contagion. The MCICH
method does significantly better in all cases.
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